O Algebras with Three Simple Modules

نویسنده

  • Pu Zhang
چکیده

0. Introduction. In D], Dyer has introduced the concept of O algebra, this is a basic quasi-hereditary Koszul algebra with an anti-involution, such that its quadratic dual is also quasi-hereditary. Typical examples of such algebras are ones associated with blocks of category O of Bernstein-Gelfand-Gelfand BGG], see also Beilinson-Ginsburg-Soergel BGS]. The present paper grew out of a desire to understand O algebras in the framework of the representation theory of nite-dimensional algebras, in particular, inside the one of quasi-hereditary algebras in the sense of Cline-Parshall-Scott CPS]; see also Dlab-Ringel DR] and Ringel R2]. We consider such algebras with three (two) simple modules, this is the simplest and basic case: any O algebra has a subalgebra of this form. We recall some deenitions and facts in section 1. In section 2 we classify Dyer algebras with three simple modules in terms of quivers and relations (denoted by O(l; m; n)), they are all quadratic. Representation types of O(l; m; n) are determined in section 3. It is proved in section 4 that algebras O(l; m; n) are closed under quadratic duals, and that they are all O algebras; as a corollary the global dimensions are given. In section 5 we give a suucient condition for the existence of an exact Borel subalgebra (in the sense of KK onig K]) of a Dyer algebra, and then use this to compute Kazhdan-Lusztig-Vogan polynomials of O(l; m; n). One of the most important things in representations of a quasi-hereditary algebra is the existence of the characteristic module and the Ringel dual, see R2]. In section 6 we discuss Ringel duals of O(l; m; n; M; B v). This work is done in University Bielefeld, I would like to thank Professor C. M. Ringel, who has introduced me into this topic, and other colleagues, both for helpful conversations and hospitality; I am indebted to the Alexander von Humboldt Foundation for the generous supports.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lie Algebras and Degenerate Affine Hecke Algebras of Type A

We construct a family of exact functors from the BGG category O of representations of the Lie algebra sln(C) to the category of finite-dimensional representations of the degenerate (or graded) affine Hecke algebra Hl of GLl. These functors transform Verma modules to standard modules or zero, and simple modules to simple modules or zero. Any simple Hl-module can be thus obtained.

متن کامل

Some Properties of $ ast $-frames in Hilbert Modules Over Pro-C*-algebras

In this paper, by using the sequence of adjointable operators from pro-C*-algebra $ mathcal{A} $ into a Hilbert $ mathcal{A} $-module $ E $. We introduce frames with bounds in pro-C*-algebra $ mathcal{A} $. New frames in Hilbert modules over pro-C*-algebras are called standard $ ast $-frames of multipliers. Meanwhile, we study several useful properties of standard $ ast $-frames in Hilbert modu...

متن کامل

2 1 A pr 1 99 8 LIE ALGEBRAS AND DEGENERATE AFFINE HECKE ALGEBRAS OF TYPE

We construct a family of exact functors from the BernsteinGelfand-Gelfand category O of sln-modules to the category of finite-dimensional representations of the degenerate affine Hecke algebra Hl of GLl. These functors transform Verma modules to standard modules or zero, and simple modules to simple modules or zero. Any simple Hl-module can be thus obtained. Introduction The classical Frobenius...

متن کامل

ar X iv : 0 70 4 . 39 88 v 1 [ m at h . O A ] 3 0 A pr 2 00 7 THREE APPLICATIONS OF THE CUNTZ SEMIGROUP

Building on work of Elliott and coworkers, we present three applications of the Cuntz semigroup: (i) for many simple C∗-algebras, the Thomsen semigroup is recovered functorially from the Elliott invariant, and this yields a new proof of Elliott’s classification theorem for simple, unital AI algebras; (ii) for the algebras in (i), classification of their Hilbert modules is similar to the von Neu...

متن کامل

Monomial Irreducible sln-Modules

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007